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STRESSOR RESPONSE MODEL FOR THE 
SEAGRASSES, Halodule wrightii and Thalassia 
testudinum 

By Frank J. Mazzotti, Leonard G. Pearlstine, Robert Chamberlain, Tomma Barnes, Kevin 
Chartier, and Donald DeAngelis 

Introduction 
A key component in adaptive management of Comprehensive Everglades Restoration Plan 
(CERP) projects is evaluating alternative management plans. Regional hydrological and 
ecological models will be applied to evaluate restoration alternatives and the results will be 
applied to modify management actions. 

Southwest Florida Feasibility Study 

The Southwest Florida Feasibility Study (SWFFS) is a component of the Comprehensive 
Everglades Restoration Plan (CERP). The SWFFS is an independent but integrated 
implementation plan for CERP projects and was initiated in recognition that there were 
additional water resource issues (needs, problems, and opportunities) within Southwest Florida 
that were not being addressed directly by CERP. The SWFFS identifies, evaluates, and compares 
alternatives that address those additional water resource issues in Southwest Florida. An adaptive 
assessment strategy is being developed that will create a system-wide monitoring program to 
measure and interpret ecosystem responses. The SWFFS provides an essential framework to 
address the health and sustainability of aquatic systems. This includes a focus on water quantity 
and quality, flood protection, and ecological integrity.  

C43 West Reservoir 
The purpose of the C43 Basin Storage Reservoir project is to improve the timing, quantity, and 
quality of freshwater flows to the Caloosahatchee River estuary. The project includes an above-
ground reservoir with a total storage capacity of approximately (170,000 acre-feet) and will be 
located in the C-43 Basin in Hendry, Glades, or Lee Counties. The initial design of the reservoir 
assumed 8094 hectares (20,000 acres) with water levels fluctuating up to 2.4 meters (8 feet) 
above grade. The final size, depth and configuration of this facility will be determined through 
more detailed planning and design.  

Forecasting Models 
Forecasting models bring together research and monitoring to ecosystems of Southwest Florida 
and place them into an adaptive management framework for the evaluation of alternative plans. 
There are two principle ways to structure adaptive management: (1) passive, by which policy 
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decisions are made based on a forecasting model and the model is revised as monitoring data 
become available, and (2) active, by which management activities are implemented through 
statistically valid experimental design to better understand how and why natural systems respond 
to management (Wilhere 2002).  

In an integrated approach that includes both passive and active-adaptive management, a 
forecasting model simulates system response and is validated by monitoring programs to 
measure actual system response. Monitoring can then provide information for passive-adaptive 
management for recalibration of the forecasting model. Directed research, driven by model 
uncertainties, is an active-adaptive management strategy for learning and the reduction of 
uncertainties in the model.  

The forecasting models for the C-43 West Reservoir Project and the Southwest Florida 
Feasibility Study consist of a set of stressor response (habitat suitability) models for individual 
species. These stressor response models have been developed principally with literature, expert 
knowledge, and currently available field data.  

Habitat Suitability Indices 
Habitat Suitability Indices (HSI) models were developed with each stressor variable portrayed 
spatially and temporally across systems of the study area at scales appropriate to the organism or 
community being portrayed. The HSI models have been incorporated into a GIS to portray 
responses spatially and temporally to facilitate policy decisions. That is, the model describes a 
response surface of habitat suitability values that vary spatially according to stressor levels 
throughout the estuary and temporally according to temporal patterns in stressor variables. Much 
of the temporal variation is a result of temporal cycling of important stressor inputs, such as 
water temperature and salinity. Temporal change for other important variables may not be 
cyclical, such as rising sea level and increasing land use and fresh water demands in the region. 
Areas predicted to be suitable and those predicted to be less suitable or disturbed should be 
targeted for additional sampling as part of the model validation and adaptive management 
process.  

Species selected for modeling (focal species) are ecologically, recreationally or economically 
important and have a well established linkage to stressors of management interest. They may 
also make good focal species because they engage the public in caring about the outcome of 
restoration projects. The habitat suitability models (HSI) were developed by choosing specific 
life stages of each species with the most limited, restricted, or tightest range of suitable 
conditions, to capture the highest sensitivities of the organisms to the environmental changes 
associated with the planned restoration activities. Values used in the models are listed in Table 1. 

The models calculate habitat suitability monthly as the weighted geometric mean of the 
environmental variables identified as important for each model. Because the geometric mean is 
derived from the product of the variables rather than the sum (as in the arithmetic mean) and has 
the appropriate property that if any of the individual variables are unsuitable for species success 
(i.e., the value of the variable is zero) then the entire index goes to zero.  

Ecology of Seagrasses 
Beds of submerged aquatic vegetation (SAV) are important to the ecology of shallow estuarine 
and marine environments. These beds provide habitat for many benthic and pelagic organisms, 
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function as nurseries for juveniles and other early life stages, stabilize sediments, improve water 
quality, and can form the basis of a detrital food web (Kemp et al. 1984; Fonseca and Fisher 
1986; Carter et al. 1988; Killgore et al. 1989; Lubber et al. 1990). Because of the importance of 
these beds, estuarine restoration initiatives often focus on SAV (Batiuk et al. 1992; Johansson 
and Greening 2000; Virnstein and Morris 2000). SAV are commonly monitored to gauge the 
health of estuarine systems, (Tomasko et al. 1996) and their environmental requirements can 
form the basis for water quality goals (Dennison et al. 1993; Stevenson et al. 1993).  

In the Caloosahatchee Estuary, field and laboratory research has been conducted by the South 
Florida Water Management District (SFWMD, associated contractors, and non-government 
organizations over a wide range of flows and salinities. This information, along with the results 
from researchers in other systems, is used to estimate maximum freshwater inflow limits and 
associated water quality requirements to protect and restore Halodule wrightii (shoal grass) and 
Thalassia testudinum (turtle grass).  

McNulty et al. (1972) and Harris et al. (1983) mapped SAV in the lower estuary upstream of 
Shell Point, as well as throughout the outer embayments. Halodule is the only seagrass species 
consistently located upstream of Shell Point (Figure 1: Stations 5 and 6) until it mixes 
downstream with Thalassia and other less common species in San Carlos Bay (Stations 7 and 8) 
and Pine Island Sound (Stations 9 and 10). Halodule has a wide salinity tolerance (McMahan 
1968). It does not survive below 3.5 ppt and prefers salinity as high as 44 ppt (Zieman and 
Zieman 1989). This wide tolerance is probably why it is the only true seagrass species 
encountered upstream of Shell Point. Monitoring results (Figure 2a) indicate that, of all areas 
where Halodule is present, the lowest biomass is found upstream, where salinity is more diluted 
and most variable (Chamberlain et al 1995, Chamberlain and Doering 1998b, Doering et al. 
2002). The greatest biomass occurs when salinity is above 20 ppt. Figure 2a also depicts seasonal 
growth patterns that can be influenced by high freshwater inflow that cause decreasing salinity 
(as occurred in the Water Year 2006) due to tropical storms during 2004 and 2005. 

Literature summarized by Zieman and Zieman (1989) indicates that the optimum salinity range 
for Thalassia is 24-35 ppt. The maximum photosynthetic activity of Thalassia occurs in euhaline 
seawater and decreases proportionately with decreasing salinity. Thalassia does not grow in 
areas with salinity normally below 17 ppt and will suffer significant leaf loss when exposed to 
lower salinity. Thalassia does not exist upstream of Shell Point where salinity during the 
SFWMD study was more variable. Recent monitoring results (Figure 2b) also depict a declining 
density below normal at the end of WY 2006 from discharge related to tropical storms during 
2004 and 2005. 

Comparison of map coverage by Harris et al. (1983) determined substantial loss in seagrass 
during the mid-later 20th century. This loss was in part due to changes in freshwater flow patterns 
(salinity variability), physical alteration in the estuary and watershed, as well as changes in water 
management practices (Chamberlain and Doering 1998a). Harris et al. (1983) reported that the 
greatest loss appeared to be from deeper beds, which indicates that a change in water clarity has 
occurred, in part probably due to the increased freshwater inflow reaching the downstream beds 
and associated decreased water quality (i.e., increased water color).  

In general, as flows increase, the water quality constituents (primarily color) that inhibit light 
penetration also increase. Therefore, as light attenuation increases, the depth at which the 
seagrass can survive decreases. SFWMD monitoring data indicates that average monthly flows 
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from S-79 that exceed 4,000 cfs are associated with light penetration below that necessary to 
support plants at 1 m depth in San Carlos Bay. Lower mean monthly discharges that approach 
3,000 cfs are associated with the same problem for Halodule upstream of Shell Point. At deeper 
depths (e.g., 1.5m) plant coverage is considerably more sensitive to the freshwater inflow (Figure 
3). 

 
Figure 1.  Caloosahatchee Estuary SAV monitoring stations for Vallisneria americana is found 
at stations 1-3, Halodule wrightii at stations 5-10, Thalassia testudinum at stations 8-10.  
 
 
Based on the literature identified in Table 1, along with SFWMD laboratory and field research, 
the HSI curve in Figure 4 was formulated to represent relative Halodule and Thalassia response 
to salinity values generated during model runs.  

Although there are species-specific variations, generally speaking, SAV distributions are limited 
by four environmental factors: light, salinity, temperature, and nutrients (Dennison et al. 1993, 
Kemp et al. 2004). In the Caloosahatchee, as indicated above, studies have documented that SAV 
distribution and subsequently its functionality, is strongly related to limits on their physiological 
response to salinity and light. Except at the distribution margins, plant location in the estuary 
generally depends on salinity, while growth characteristics controlling plant height and depth 
strongly relates to light attenuation within salinity tolerant zones.  
 
The average daily bottom light (ADBL) required by SAV, which helps determine the depth to 
which plants exist, is measured in the photosynthetic active radiation (PAR) spectrum of 400-700 
nanometers during the entire 24 hour day (not just daylight or peak light periods). ADBL for 
shoal grass can be divided into stressed environments like in Iona Cove, and more desirable areas 
as in San Carlos Bay (as evidenced in the results of Dunton 1994 and 1996 from Texas). Dunton 
and Tomasko (1991) and Dunton (1996) also determined light requirements during winter and 
summer seasons. Based primarily on their results, the minimum range of ADBL in Iona Cove is 

2estimated to be about 50-60 micro-Einsteins (uE = micromoles/m /sec) and saturation is 220-
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300uE, depending on the season . In San Carlos Bay, the minimum and saturation levels of 
ADBL equates to about, 75-100uE, and 225-325uE, respectively. 
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Figure 2. Time series density of seagrass: (a.) Halodule wrightii; and (b) alassia testudinum (turtle 

ted 
Th

grass) in the Caloosahatchee Estuary and San Carlos Bay, with the time period of a  Water Year indica
(WY: May 1 –April 30). Data collected by the Sanibel-Captiva Conservation Foundation. 
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Hydroacoustic Sampled Seagrass 
      % Coverage at  1.5 m

 
Figure 3.  Seagrass coverage at two locations downstream of the Caloosahatchee River (a. Site 7; 
and b. Site 9-in Figure 1) compared to 60-day average freshwater inflow from S-79 prior to 
sampling. 
 
 
These estimates can be put on a relative HSI scale from 0 to 1 as reflected in Figure 5. However, 
this scale better reflects the quality of habitat (e.g. plant growth potential and health), not the 
amount of coverage (acres), which is one of the HSI modeling objectives. For example, a HSI 
=1.0 or 0.5 both represent an area with plant coverage that is sustainable between months. To 
address this issue, a “50% Approach” was adopted, whereby a single linear line from the 
minimum ADBL during the winter in Iona Cove to the PAR level of 150uE is used that 
represents 50% of saturation during the summer growing season in San Carlos Bay (Figure 5). 
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Table 1. Habitat Requirements for the Seagrasses, Halodule and Thalassia. The following table 
summarizes S-79 inflow criteria (mean monthly cubic feet per second), important salinity ranges, 
and water quality requirements for the protection and support of Halodule and Thalassia in the 
Caloosahatchee Estuary. 
 
Variable Estuary Area Value Source 
    
Halodule 
and 
Thalassia  

Throughout their 
range 

Light to 1m: 
1) Min. 20-25% of  
Subsurface irradiance 
2) Minimum attenuation Coef  
-1.5 
3) Most important during 
warm growing season 
4) Recovery goal: 
Deeper, 2m? 
5) Optimal Productivity at 300 
mE 

Kenworthy and Haunert 1991 
Tomasko and Hall 1999 
Dixon and Leverone 1995 
Herzka and Dunton 1997 
Fong et al. 1997 

    
Halodule Throughout its 

range  
Salinity: 
1) 3.5ppt - minimum 
tolerance; duration of 
tolerance 1-2 months; 
Recovery 1 year (following 
winter and spring) of  
preferred salinity 
2) Prefers > 20ppt, below 
which productivity declines 
3) Optimum, seawater ~   
    35ppt 
4) Location requirements – 
long term average salinity 
>20ppt, std. dev. < 10ppt 

Zieman and Zieman 1989 
McMahan 1968 
Chamberlain and Doering 1998b 
Chamberlain (Pers. field/lab  
   obs) 2004 

    
  Temperature: 

1) Greatest productivity during 
March – September (Possibly 
a magnitude more biomass in 
shallow areas of Area 6) 
2) Optimum 22-26oC  

Chamberlain (Pers. field/lab  
    obs/analysis) 2004 
Fong et al. 1997 
 

    
 Area 5 Flow (to achieve above 

salinity and light limits): 
1) Max < 3,000 cfs  
2) Preferred < 1000 cfs 
3) Optimum < 500 cfs   

Chamberlain and Doering 1998b 
Doering et al. 2002 

    
Thalassia Throughout its 

range 
Salinity: 
1) ~ 6ppt - minimum 
tolerance; duration tolerance 
1-2 months; 
Recovery 1 year (following 
winter and spring) of preferred 
salinity; 

Chamberlain and Doering 1998b 
Doering and Chamberlain 2000 
Doering et al. 2002 
Zieman and Zieman 1989 
Zieman et al 1999 
Chamberlain (Pers. field/lab  
    obs/analysis) 2004 
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Mortality when 0 ppt for > 3 
weeks – no recovery 
2) Prefers > 20ppt, < 17ppt 
productivity declines 
3) Optimum, 24-35ppt 
4) Location requirements – 
long term average salinity 
>20-25ppt, std. dev. < 5ppt 

 

    
  Temperature: 

1) Greatest productivity during 
March – September  
2) Optimum when ~ 30oC  
3) Decreased productivity 
    @ < 20 oC   
4) Stressful when water   
    temp < 15 oC (winter) 
5) Mortality - month>36oC  

Chamberlain (Pers. field/lab  
    obs/analysis) 2004 
Dawes et al. 1997 
Koch and Erskine 2001 
Miller 2000 

    
Halodule 
and 
Thalassia 

Area 6 Flow (to achieve above 
salinity and light limits): 
1) Max 4,500 cfs  
2) Preferred < 2,500 cfs 
3) Optimum < 1,000 cfs   

Chamberlain and Doering 1998b 
Chamberlain 1995 
Doering et al. 2002 

  
 

The formula for calculating ADBL is based on the Lambert-Beer equation, which requires 
knowing: (1) surface incident light in the PAR spectral range; (2) water column light attenuation 
(K); and (3) depth. Average monthly incident PAR for the Caloosahatchee is depicted in Figure 6 
and was calculated from a daily average PAR dataset, recorded by a continuous sensor during 
1998-2004, located in the nearby Estero Bay Watershed. Light attenuation was calculated based 
on the curvilinear relationships of salinity and simultaneous light attenuations measurements 
(Figure 7) at stations upstream and downstream of Shell Point (Figure 8). Depth was determined 
from bathymetry surveys of the Caloosahatchee Estuary and the resulting information supplied in 
a GIS data file that matched the grid cell points of the model. 

 
Seasonal patterns are an indication of the influence and importance of temperature on seagrass, 
with the best growth occurring between the 22 and 30oC range. In addition, temperature will 
affect photosynthesis by altering the rate of biochemical reactions of photosynthesis. Therefore, 
ecological models of seagrass include temperature as a variable governing seagrass growth 
predictions (Fong et al. (1887). Based on these literature results and those identified in Table 1, a 
HSI temperature curve was developed (Figure 9) that indicates the relative importance and input 
value to the HSI model, as per the estimated daily average (ambient) temperature (Figure 10).  
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HSI for the Seagrass, Halodule wrightii and Thalassia 
testudinum  
HSI Variables and Summary Formula 

 
Habitat suitability for the combined grasses Halodule wrightii and Thalassia testudinum 
is calculated monthly as a geometric mean:  
 
HSI = (Previousw * Salinityw * Temperaturew * LightAvailabilityw) 
 
Where w = the weight for each variable and the sum of w = 1. In the accepted model, 
each of the variables has been weighed equally, so w = 0.25. 
 
Previous 
"Previous" variable included because current month’s HSI score should depend on the 
how well the grass was doing last month (previous score). In the model application, 
Previous = previous_month_HSI score + 0.05, (not to exceed 1.0), in order to allow for 

 growth from month to month, if other conditions are suitable. 

Table 2. Changes to HSI model’s spatial boundaries (A and B) and post-processing routines (C) 
for adjusting the final HSI ecological model scores to better reflect long-term impacts of severe 
reduction in seagrass coverage due to low HSI scores of environmental variables (salinity, light 
and temperature in above model formula). 

Routine Model output criteria Model score adjustment 
A.  Apply new masks for the three areas of 

the estuary (Pine Island, San Carlos 
Bay, and Iona Cove 

Consider them separately and evaluate the spread 
across them 

B. Establish a lower depth threshold of 5 ft 
and 7ft in San Carlos Bay and Pine 
Island Sound 

Model areas > depth thresholds are not scored  

C. If HSI score < 0.1 for one month, Than HSI = 0.1 for remainder of season 
Adjustments were agreed to by ecological benefits sub-team (6/14/06) 

 

HSI Curves and Application (for determining HSI variable input values) 
Salinity 
 
HSI Calculation – Values based on the literature identified in Table 1, along with 
SFWMD laboratory and field research, which resulted in the curvilinear relationship 
between HSI values and salinity depicted below in Figure 4.   
 
Data Source - Freshwater inflows are estimated for S-79 and from the tidal basin using 
hydrologic models. Flows are generated for each base-case and proposed alternative. 
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These flows are input for the CH3D hydrodynamic salinity model and associated 
regression routine, which calculates salinity at fixed locations in the estuary. Using a 
spatial interpolation program, salinity is then calculated throughout the estuary at each 
GIS cell point where a HSI value is determined.  
 

 
Figure 4.  Habitat suitability index value for seagrass response to salinity. 

 

Available light at Depth (based on Halodule wrightii requirements) 
 
HSI Calculation – Literature provided estimates of the light needed by Halodule, ranging 
from the minimum requirements to the maximum a plant can utilize. Since this project is 
interested in estimating the area of coverage and not the density, a 50% line was used to 
estimate HSI related to potential for presence (Figure 5).  
 
Data Source  
a) Depth - Recent bathymetry data  provided in GIS format to match HSI cells.  
b) Available incident light at the surface (surface irradiance = SI)) -  Daily average value 

estimated from a  continuous sensor (7 year period of record, 1998-2004: Figure 6). 
c) Light attenuation (K) - Amount of Photosynthetic Active Radiation (PAR) lost with 

increasing water depth. Field measured values were correlated with simultaneous 
field measurements of salinity from upstream of Shell Point (Iona Cove area) and 
downstream (San Carlos Bay and Pine Island Sound) using non-linear regression 
(Figures 7 and 8). 

d) Amount of light at depth (ADBL) for each HSI cell – Determined using the Lambert-
Beer equation ( [(0.9*SI)*e-K*depth] ) , which requires input of the incident light just 
below the water surface (.90(SI)), the attenuation coefficient (K), and depth of each 
GIS cell. 
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Figure 5.  Habitat suitability index value for seagrass response to light. HSI values 
represent the relative amount of average daily light required by  Halodule wrightii. The 
50% line was used in the model to indicate relative light vs. plant’s need to maintain 
presence 
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Figure 6. Average Monthly Photosynthetic Active Radiation (PAR) 
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 San Carlos Bay and Iona Cove
    Light Attenuation vs Salinity
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Figure 7. Light attenuation vs. Salinity in seagrass areas. 
 
 

 

Iona Cove 

Shell Point 

San Carlos Bay 

 
Figure 8. Light attenuation regions. The model uses Iona Cove light attenuation 
relationships for areas east of Shell Point and San Carlos Bay light attenuation 
relationships for areas west of Shell Point. 
 
 

 13



Temperature 
 
HSI Calculation – Preferred temperature range of seagrass (Figure 9) based on literature 
values (Dawes et al. 1997, Koch and Erskine 2001, Miller 2000). 

Data Source – HSI uses a monthly average estimated water temperature. The single 
monthly value is estimated by fitting a non-linear regression line to daily temperature vs. 
day of the year (Period of record beginning in 1993), so each day has about 13 
temperature values (Figure 10).  
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Figure 9. Habitat suitability index value for seagrass response to temperature. 
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